
 

 
 

 

 

 

 

Decoding Preadolescent Anxiety with Machine Learning Insights from Neuroimaging Data 

 

Olimpia Carrioli 

Dr. Deanna Greene1, Dr. Alessandra Camassa2, Dr. Jason G. Fleischer1, Dr. Terrence Sejnowski2 

1UC San Diego Department of Cognitive Science 

2Salk Institute for Biological Studies 

 
 

1 



 

Introduction 

 
Figure 1. Project Pipeline 
The ABCD dataset includes substantial imbalance across collection site, sex, and diagnostic groups (top left). To address this, we 
constructed a subset of the baseline cohort stratified by site and scanner type (therefore by diagnostic group) and with overall sex 
balance. This yielded final cohorts of 260 Controls matched to 255 Anxiety cases, and 228 Controls matched to 229 Anx/Dep 
cases. fMRI data from 22 sites were used to estimate beta activation coefficients for task contrasts via a general linear modeling 
(GLM), resulting in activation coefficients (β) features across 98 ROIs, segmented according to the Desikan-Killani atlas. For 
Anxiety classification, medication usage (ADHD medication, antidepressants, antipsychotics, anticonvulsants, and mood 
stabilizers) was included as binary features. For Anx/Dep classification, medication, sex, and site were included as features. 
Site-stratified data splitting held out two samples per class per valid site (≥2 samples per class per site) for testing, with 
remaining subjects used for training. A Random Forest classifier was trained using grid search with 5-fold cross-validation for 
hyperparameter tuning and feature selection via SelectFromModel. The best model is fit on the full training set and selected 
features. Final model performance was evaluated on the held-out test set for both Anxiety and Anx/Dep prediction tasks. 
 

Anxiety disorders represent a growing public health concern among children and 

adolescents. In the United States, over one in three adolescents (31.9%) meets diagnostic criteria 

for an anxiety disorder by age 18 (Merikangas et al., 2010), and multiple studies indicate that 

prevalence is rising. Data from the National Survey of Children’s Health, for example, show a 

61% increase in anxiety prevalence between 2016 and 2023 (Health Resources and Services 
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Administration, Maternal and Child Health Bureau, 2024). These conditions often emerge in 

preadolescence, disrupting social relationships and academic performance, and they predispose 

those affected to the risk of long-term psychiatric impairment. Early diagnosis is critical, as 

timely intervention is known to shorten recovery time and improve outcomes later in life 

(McGorry & Mei, 2018). 

Despite their acknowledged importance, psychiatric diagnoses are limited by both 

clinical and methodological challenges. Instruments such as the Diagnostic and Statistical 

Manual of Mental Disorders, Fifth Edition (DSM-V) and the Achenbach System of Empirically 

Based Assessment (ASEBA) are the field standard, but their utility in neurobiological research is 

limited. DSM diagnoses are categorical and threshold-based, often collapsing diverse symptom 

profiles under the same diagnosis (Kotov et al., 2017). Additionally, the DSM and ASEBA scales 

rely on parent-report data, which may underrepresent internalizing symptoms that are less 

observable (De Los Reyes & Kazdin, 2005). Perhaps most critically, these diagnostic systems 

lack a direct mapping onto the neural mechanisms they aim to characterize, limiting their value 

for developing brain-based diagnostic tools (Pickersgill, 2014). Given these limitations, there is a 

growing need for approaches that can directly link behavioral symptoms to brain function.  

In response, researchers have turned to neuroimaging and supervised machine learning 

(ML) as tools for understanding and predicting psychiatric conditions. Advances in functional 

Magnetic Resonance Imaging (fMRI) and computational modeling make it possible to examine 

distributed patterns of brain activity and their relationship to symptoms and diagnosis. In adults, 

ML models have shown moderate success—often achieving classification accuracies in the 

70–85% range—in identifying anxiety, depression, and related disorders vs. control populations 

from structural and functional neuroimaging data (Portugal et al., 2019; Mousavian et al., 2021). 
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Similar work in adolescents has begun to explore whether these methods can be adapted for early 

diagnosis (Sawalha et al., 2021; Chavanne et al., 2022). However, realizing this potential 

requires overcoming key methodological challenges. 

One of the most pressing issues in the ML application to psychiatry is the problem of 

overfitting. High-dimensional brain data coupled with small samples can lead models to learn 

noise or dataset-specific artifacts instead of meaningful brain patterns. This problem is 

particularly relevant in psychiatric applications, where effect sizes are often small and labels may 

be uncertain or imprecise. Common pitfalls that lead to overfitting include performing feature 

selection on the full dataset or failing to use held-out test sets. In these cases, model performance 

may appear strong but does not reflect true predictive power. As several reviews have 

emphasized (Pulini et al., 2019; Anderson et al., 2019; Kassraian-Fard et al., 2016), even subtle 

forms of information leakage can significantly inflate reported accuracy. These risks are further 

increased when confounds such as site variability or scanner-specific artifacts correlate with 

diagnosis, creating spurious correlation which nonetheless can be learned. With these challenges 

in mind, we developed a machine learning pipeline designed to mitigate overfitting and aid 

interpretability in classifying individuals with anxiety from healthy controls using brain 

activation data. 

Project Overview 

The aim of this project is to determine whether patterns of brain activation during a 

working memory task could distinguish preadolescents with anxiety from healthy controls. As 

shown in Figure 1, this was done via a machine learning pipeline applied to task-based fMRI 

data from the Adolescent Brain Cognitive Development (ABCD) Study. This dataset presents 
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considerable heterogeneity in collection sites, scanner types, sex distribution, and medication 

intake, sources of potential confounds that were addressed to mitigate the risk of overfitting.  

The ABCD dataset encompasses several neuroimaging data types; here we focus on beta 

activation coefficients extracted from the Emotional N-Back (EN-Back) task—a paradigm that 

probes working memory and emotional processing. We used these neural features, along with 

indicators of medication usage, to train a Random Forest classifier to predict anxiety status. 

Throughout the pipeline, particular attention was given to minimize methodological and 

demographic bias, including stratification by collection site and diagnostic status, as well as 

statistical validation using permutation testing. This framework was designed not only to 

evaluate classification performance, which can lead to new and improved diagnostic systems, but 

also to explore whether specific brain regions serve as early neural markers of anxiety. A parallel 

analysis was also conducted for Anxious-Depressed classification using the ASEBA scale, with 

results discussed in the appendix. 

 

 

Methods 

Participants 

This study used baseline data from the Adolescent Brain Cognitive Development Study, a 

longitudinal research effort that maps biological, cognitive, and behavioral development from 

childhood to adulthood. Data collection occurs across 22 institutions in the United States, and the 

baseline cohort encompasses approximately 11,000 participants aged 9 and 10 years (Casey et 

al., 2018). Mental health is assessed annually through diagnostic interviews, with psychiatric 

conditions identified using both the Achenbach System of Empirically Based Assessment 

(ASEBA) and Diagnostic and Statistic Manual of Mental Disorders, Fifth Edition (DSM-V).  

5 



 

In this project, we primarily focus on the prediction of Anxiety Disorder based on the 

Child Behavioral Checklist (CBCL) DSM-oriented scale. In this context, Anxiety refers to a 

cluster of parent-reported behaviors and symptoms that reflect anxiety psychopathologies as  

 

 
Figure 2. ABCD implementation of the Emotional N-back task (adapted from Casey et al., 2018). 
This figure illustrates the specific timing and structure used in the ABCD Study’s version of the EN-Back task. Each block begins 
with a 2500 ms instruction screen, followed by trials that include a 1000 ms inter-stimulus interval (ISI) and a 2000 ms stimulus 
presentation. Blocks alternate between emotional faces and places to probe working memory performance under emotional and 
neutral conditions.  
 
 
 

defined by the DSM-V. Such conditions are united by excessive worry, restlessness, irritability, 

sleep disturbances, symptoms which cause distress and impairments in one’s social and private 

lives. Anxious Depression classification using the Child Behavioral Checklist (CBCL) 

questionnaire based on ASEBA scales was also conducted but not retained for analysis; this 

outcome is examined in the Appendix section. We used baseline data as a first step, with the 

intention of extending the analysis to later time points in future work. 

 
Task Paradigm and Neuroimaging Acquisition 

Neuroimaging procedures were standardized across sites and involve an approximately 

30-minute prescan interview, during which MRI contraindications are assessed and participants 
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practice task procedures. This was followed by two scan sessions of approximately one hour 

each (for further details, see Casey et al., 2018). 

Among the multiple behavioral tasks included in the ABCD neuroimaging battery, this 

project focuses on the Emotional N-Back task, designed to measure emotional processing and 

working memory. In this task, participants were presented with faces displaying various 

emotional expressions or images of places. They were tasked with identifying whether the 

current stimulus matches either a predefined target (0-back condition) or the stimulus presented 

two trials earlier (2-back condition). The emotional stimuli include faces expressing negative, 

neutral, or positive emotions (Casey et al. 2018). A summary of the EN-Back task design is 

presented in Figure 2.  

fMRI Preprocessing and Feature Extraction 

Beta activation coefficients for each task condition were extracted using a Generalized 

Linear Model (GLM) applied to motion-corrected, distortion-corrected, and spatially normalized 

fMRI scans (Casey at al., 2018). These beta coefficients, which quantify brain activation during 

specific task conditions, served as the primary features for classification. Preprocessed beta 

values were provided directly by the ABCD consortium (Data Release 4.0; Yang & Jernigan, 

n.d.) . Since each subject completed two runs of the EN-Back task during the scanning session, 

beta coefficients for each condition were averaged across runs to generate a single feature set per 

subject. 

Cohort Selection and Confounding Mitigation 
 

To ensure robustness and minimize confounding effects, we applied a series of 

preprocessing steps and sampling strategies during subject selection. Below, we describe the 

distributions observed in the data and the steps taken to address them. Importantly, control  

7 



 

 

 
 

 
 
 
Figure 3.Analysis of ABCD dataset showing subject distribution according to scanner type, collection site coupled with sex 
and disorder status, and medication intake.  
A) Horizontal bar plot summarizing the percentage of subjects scanned on Siemens, GE, and Philips MRI systems within each 
diagnostic group (Control, Anxiety, Anx/Dep); the percentage for each vendor is labelled on the bar, and the brand is 
color-coded. 
 
B) For the anxiety diagnosis group and the global control cohort, vertical grouped bars give subject counts per collection site, 
further split by sex and diagnostic status (female control, female disorder, male control, male disorder). Red shades indicate 
females; blue shades indicate males. Refer to the appendix for an analogous Anx/Dep plot. 
 
C) Stacked bar plot displaying medication intake counts for the anxiety diagnosis group and the global control cohort. The bar 
height corresponds to the raw count across the full ABCD baseline cohort, with percentages reflecting the anxiety and control 
proportions. Group type is color-coded. Refer to the appendix for an analogous Anx/Dep plot. 
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participants were selected to be free from any psychiatric diagnosis from the ASEBA and 

DSM-oriented scales (all scores ≤ 50) not free from anxiety, to maximize the difference between 

distributions. Additionally, anxiety participants were identified according to the clinical threshold 

of 69 points on the CBCL scale. 

Scanner Type Distribution and Correction 

As shown in Figure 3A, the majority of participants were scanned using Siemens 

scanners across all groups (66% for Anxiety, 66% for Anxious-Depressed, and 64% for 

Controls), but a notable fraction was scanned using GE Medical Systems (22–26%) and Philips 

Medical Systems (8–14%). Since scanner type is shown to have a significant impact on fMRI 

data (Marek et al. 2016), we ensured that the diagnostic groups were balanced within each 

scanner type, thereby mitigating scanner-related confounds while retaining maximum 

generalizability. Specifically, the final group included 159 anxiety participants and 161 controls 

scanned on Siemens machines, 78 anxiety participants and 80 controls scanned on GE Medical 

System machines, and 18 anxiety participants and 19 controls scanned on Philips machines. 

 
Site Distribution and Correction 

Subject distribution across the 22 ABCD collection sites also varied quite a bit (Figure 

3B). To control for site effects, we stratified our subject selection by site. Specifically, for each 

site, we selected an equal number of participants with and without Anxiety. The number of 

participants we selected could vary site-by-site depending on how many subjects were available, 

but within each site, the diagnostic groups were balanced. The test set is composed of two 

participants per site per diagnostic group—meaning two with anxiety and two 

controls—ensuring a balanced representation across sites and diagnoses. Additionally, we 
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balanced the overall sample by sex, regardless of site or diagnosis, to address potential 

sex-related confounds. 

Medication Usage  

Medication usage differed between groups, as shown in Figure 3C. Participants with a 

psychiatric diagnosis were much more likely to report taking medication, especially ADHD 

medications, antidepressants, and corticosteroids. We tested several strategies to address this, 

including an analysis that excluded all medicated participants. However, this approach resulted 

in a substantial reduction in sample size and a concomitant increase in overfitting and decrease in 

test set performance. Therefore this approach was set aside in favor of the one described below. 

Instead, we decided to keep medicated participants in the analysis and to include medication 

usage as an explicit feature. The specific features included were use of ADHD medications,  

antipsychotic medications, antidepressants, and anticonvulsants. These features were one-hot 

encoded into a drug feature vector, and 10x importance weighting was applied by to account for 

the larger number of activation coefficient features in the dataset. This allowed us to control for 

medication effects without throwing away a large part of the data. Upon the aforementioned 

corrections, the final cohort consists of 515 (260 controls and 255 anxiety patients). 
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Figure 4. Cohort Selection Pipeline 
Flowchart showing the sequential preprocessing steps applied to ABCD baseline beta data (N = 9912) to construct the final 
anxiety classification cohort. Labeling was based on CBCL-derived DSM-5 t-scores, with anxiety cases defined as scoring >69 
and controls restricted to participants without any DSM or ASEBA pathologies. Subjects were removed due to missing data, then 
balanced within collection site. A scanner-type balance check was performed to ensure diagnostic groups were proportionally 
distributed across Siemens, GE, and Philips machines. Final sex balancing was applied globally, yielding a cohort of 515 
participants (260 controls, 255 anxiety cases). 
 
 
Machine Learning 

We used a supervised machine learning approach to classify participants based on their 

diagnostic status. The final model used for classification was a Random Forest (RF) classifier, 

selected after extensive model comparison and hyperparameter tuning. Before settling on 

Random Forests, which consistently achieved moderate to high performance, we tested several 

classification algorithms: Linear Support Vector Machines (SVM) with various kernel types, 

Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Multi-Layer Perceptron 
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(MLP), AdaBoost, and Naive Bayes. Alongside different classifiers, we explored multiple 

feature selection strategies, such as Recursive Feature Elimination (RFE), SelectKBest, Principal 

Component Analysis (PCA), and permutation testing.  

The final sample (see figure 4, N=515)  was divided into a test set (2 controls and 2 

anxiety patients per site) and training set (the remaining samples). Hyperparameter tuning for the 

Random Forest Classifier was performed through a grid search procedure on the training set 

using 5-fold cross validation. The parameters tested included the maximum depth (10 or 20), 

maximum features considered at each split (‘sqrt’ or ‘log2’), minimum samples required to split 

an internal node (2 or 5), and the splitting criterion (‘gini’ or ‘entropy’). The best-performing 

model, selected based on Area Under the Receiving Operating Curve (ROC-AUC) 

cross-validated performance, had 100 estimators, a maximum depth of 10, used the ‘sqrt’ 

strategy for maximum features, required a minimum of 5 samples to split a node, and used 

‘entropy’ as the splitting criterion. All other Random Forest parameters were left at their default 

settings.  

Feature selection was incorporated into the machine learning pipeline using a “Select 

From Model” approach based on the feature importances output by the Random Forest classifier. 

Specifically, feature selection was conducted within the grid search with 5-fold cross validation 

on the training set. Standardization of the beta values was performed prior to model fitting, using 

z-scoring (StandardScaler) to ensure that the features were on a comparable scale. The best 

model was retrained on the entire dataset and the selected features after hyperparameter tuning 

and feature selection.  
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Software and Environment 

​ All analyses were implemented in Python 3.11.2. The core libraries used include 

scikit-learn (1.5.2) for model training, pandas (2.2.3) and NumPy (2.0.2) for data handling, and 

matplotlib (3.9.3) and seaborn (0.13.2) for visualization. Statistical testing was done via SciPy 

(1.14.1) and statsmodels (0.14.4). Neuroimaging data manipulation relied on nilearn (0.11.1) and 

nibabel (5.3.2). All analyses were conducted on a 64-bit Unix-based system with 32 CPU threads 

and 188 GB of RAM. The full codebase is available at 

github.com/holliwood8/olimpias-honors-project. 

Permutation Testing 

To evaluate the statistical significance of our classification results and the robustness of 

the identified features, we performed a Monte Carlo permutation test. Specifically, we conducted 

1,000 Monte Carlo simulations in which the diagnostic labels (Anxiety vs. Control) were 

randomly shuffled while preserving the overall distribution of classes across sites. This was done 

to avoid biasing the site distribution and the associated risk of overfitting. For each iteration, we 

retrained the full machine learning pipeline and recorded the test accuracy, the test ROC-AUC, 

and the feature importances. This procedure generated null distributions for each evaluation 

metric, allowing us to estimate thresholds for significance at the 95th percentile. Based on these 

null distributions, we determined that a test accuracy greater than 0.59, a test ROC-AUC greater 

than 0.61, and feature importance values greater than 0.024 can be considered statistically 

significant at p < 0.05.  
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Results 

Figure 5. Test set performance metrics for anxiety classification. 
Line plot showing test set accuracy (blue) and area under the ROC curve (ROC-AUC; orange) for binary classification of anxiety 
disorder. Features include beta activation coefficients grouped by task condition, along with medication intake (ADHD 
medication, antidepressants, antipsychotics, anticonvulsants, and mood stabilizers). Chance-level performance (0.5) is marked 
by the dashed horizontal line. See appendix for corresponding results on Anx/Dep classification. 
 
 
2back_0back Contrast Yields Highest Classification Performance 

We evaluated the performance of anxiety classification at baseline by combining beta 

coefficients with medication features across nine task conditions. The final test-set performance, 

summarized in Figure 5, is reported in terms of both Accuracy and ROC-AUC metrics. These 

metrics varied substantially across conditions. Overall, the best performance was observed for 

the 2back_0back contrast, with a test accuracy of 0.74 and a test ROC AUC of 0.78. This 

condition is designed to highlight differences in brain activity under increased working memory 

load. Intermediate performances were observed for the 2back and Negface_Neutface contrasts, 

with test accuracies of 0.73 and 0.70 and ROC AUC values of 0.73 and 0.79, respectively. The 

0back and emotion conditions also showed moderate performance, with accuracies of 0.63 and 

0.67 and ROC AUC values of 0.72 and 0.70, respectively. Lower performances were noted for 

the place and Face-Place contrasts, which yielded accuracies of 0.54 and 0.55 and ROC AUC 

values of 0.60 and 0.59, respectively (these metrics should not be considered statistically 
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different from chance based on the Monte Carlo simulations described above). Similar results 

were observed for the Posface-Neutface and Emotion-Neutface contrasts, with accuracies of 0.62 

and 0.60 and ROC AUCs of 0.69 and 0.63.  

 

 
 
Figure 6. Feature importance brain map for anxiety classification using beta values from the 2-back vs. 0-back contrast and 
including medication as a feature. 

A)​ The unthresholded map displays all 33 selected ROIs, with color intensity reflecting feature importance: red indicates 
high importance; purple indicates lower importance, as shown on the accompanying scale. 

B)​ The thresholded map highlights only ROIs with importance values in the 95th percentile, computed after excluding 
medication features from the distribution.  

 
 
ADHD Medication Use Emerges as the Most Important Feature 

As previously mentioned, this analysis used ‘SelectFromModel’ for feature selection. 

Figure 6 shows the selected features shaded according to their assigned importance. In both 

panels, red shading corresponds to higher feature importance. In total, 35 features were retained 

following feature selection, including 33 brain activation coefficients and 2 medication features 
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(ADHD and antidepressant use). All selected neural features are included in figure 6A, while 

only those within the 95th percentile of importance are shown in the figure 6B. Importantly, this 

percentile is calculated on the activation coefficients only, with the medication features excluded 

from the thresholding step. Among all selected features, ADHD medication use obtained the 

highest importance overall. 

Frontal and Temporal Regions Show High Predictive Value for Anxiety 

Five brain regions emerged from the thresholding step: the right medial orbitofrontal 

cortex, the left supramarginal gyrus, the right middle temporal gyrus, the left temporal pole, and 

the left postcentral gyrus (Figure 6B). These regions span frontal, temporal, and somatosensory 

areas, and may reflect processes relevant to emotion regulation, semantic memory, and sensory 

integration—domains often implicated in anxiety. The threshold was applied to mean feature 

importances obtained from the Random Forest Classifier using the SelectFromModel algorithm.  

As noted, ADHD medication use and antidepressant use were also retained in the full feature set 

but are not shown in Figure 6.  

Discussion  

This study investigated whether brain activation during a working memory task could be 

used to distinguish preadolescents with anxiety from those without. We found that the model 

performed above chance across all task conditions, with the best results coming from the most 

cognitively demanding ones. A small set of brain regions, especially those linked to emotion 

regulation, cognitive control, and bodily awareness, stood out as important for the classification. 

Interestingly, ADHD and antidepressant medications' intake was also a strong predictor, 

highlighting both the clinical relevance and potential limitations of including treatment status in 

neuroimaging-based models. 
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To better understand what drove the model’s predictions, we next consider the influence of 

medication use, differences across task conditions, and the functional roles of the selected brain 

regions. 

Advantages and Limitations of Medication Intake as a Predictive Feature 

Including medication use as a feature considerably improved classification performance, 

suggesting that medication status carries clinically relevant information. It is possible that 

participants prescribed psychiatric medications—especially psychoactive ones like 

antidepressants or ADHD medications—tend to have more severe or persistent symptoms, which 

could produce more distinct neural activation patterns. These types of drugs are also known to 

alter brain structure and function in ways that might enhance group separability (Rubia et al., 

2014; Frodl et al., 2011; Delaveau et al., 2011). We cannot distinguish between these possibilities 

in the current study. 

That said, this finding may reflect a methodological vulnerability. The model could be 

relying too heavily on medication status, identifying participants based on treatment rather than 

core features of anxiety. This raises concerns about whether the classification is driven more by 

treatment-related signals than by underlying biomarkers of anxiety itself, especially since 

medicated participants may differ from unmedicated ones in ways unrelated to diagnosis, such as 

treatment history, comorbidities, or parental intervention. However, this pattern aligns with 

dimensional models of psychopathology, like the Research Domain Criteria (RDoC) framework 

(Cuthbert & Insel, 2013), which argues that brain–behavior relationships become more 

detectable as symptom severity increases. In that sense, medication use may be a proxy for 
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chronicity or symptoms severity, and its predictive power, while not ideal from a Machine 

Learning standpoint, still carries clinical relevance. 

Classification Performance by Task Condition 

Looking at performance across EN-Back conditions, the strongest classification results 

came from the 2back_0back contrast (0.74 accuracy, 0.78 ROC-AUC) and the 2back condition 

(0.73 accuracy, 0.73 ROC-AUC), both of which involve high working memory load. This fits 

with a long line of research suggesting that anxiety interferes with cognitive control under 

pressure (Moldawsky & Moldawsky, 1952; Rashkis & Welsh, 1946). Moran (2016) found that 

this working memory impairment scales with anxiety severity, particularly in dynamic tasks like 

the one considered here. Other studies (Shackman et al., 2006; Vytal et al., 2012) have pointed to 

prefrontal dysfunction as a likely mechanism at the base of the anxiety and working memory 

interaction, especially under cognitive stress. The fact that 0back performed notably worse (0.63 

accuracy, 0.72 ROC-AUC) supports the idea that anxiety-related differences become more 

pronounced when the system is under heightened demand. However, it is also possible that the 

improved classification in high-load conditions reflects greater overall neural engagement or 

signal variability, rather than something specific to anxiety-related impairment.  

Emotion-based conditions did not perform as well as expected. For instance, 

Emotion-Neutral Face contrast (0.60 accuracy, 0.63 ROC-AUC) and Positive Face-Neutral Face 

contrast (0.62 accuracy, 0.69 ROC-AUC) had weaker results, even though anxiety is commonly 

linked to altered emotion processing. One possible explanation is that emotional faces evoke 

similar neural responses in both anxious and non-anxious participants, reducing between-group 

separability. This idea is supported by Chaarani et al. (2021), who showed that emotional 

contrasts in the ABCD EN-Back task produced weaker and less reproducible activation than 
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high-load working memory conditions. It’s also worth considering that emotion dysregulation 

may not be uniquely characteristic of anxiety: Ladouceur et al. (2005) found that emotional 

interference during working memory tasks was more pronounced in youth with depression or 

comorbid conditions. Thus, emotion-based contrasts might be less specific to anxiety, and more 

broadly reflective of affective disturbance across diagnoses. 

The place-based conditions—place and place versus face—had the worst performance 

overall. These tasks are low in both emotional salience and cognitive demand, which may limit 

their ability to engage brain systems typically altered in anxiety. However, another possibility is 

that these conditions simply lack psychological relevance for the participants. Unlike faces or 

affectively charged stimuli, place images may not tap into the threat-monitoring or 

social-evaluative processes that are central to anxiety. Without capturing attention or evoking 

internal response, these trials may produce noisy or shallow activation patterns. While behavioral 

engagement metrics are not included, prior findings suggest that spatial contrasts often 

underperform in differentiating internalizing symptoms, particularly in youth populations 

(Chaarani et al., 2021; Bachmann et al., 2024; Nord et al., 2027). 

Altogether, the performance patterns observed across conditions align well with 

Attentional Control Theory (Eysenck et al., 2005), which proposes that anxiety impairs executive 

efficiency, especially under cognitively demanding conditions. Under low-load conditions, 

anxious participants may compensate more effectively, but as task difficulty increases, top-down 

control becomes more fragile. Nonetheless, other potential confounding factors such as 

comorbidity in the anxiety group or engagement levels were not explicitly accounted for, and it’s 

possible that other unmeasured factors are influencing these results. 

Brain Features in the Top 5% of Importance Factor, and Their Relationship to Anxiety 
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The selected brain features offer further insight. The top 5% regions according to feature 

importance—right medial orbitofrontal cortex, left supramarginal gyrus (SM), right middle 

temporal gyrus (MTG), left temporal pole, and left postcentral gyrus (S1)—span prefrontal, 

temporal, and somatosensory areas. The medial orbitofrontal cortex supports affective valuation 

and reward-based decision-making, a process often disrupted in anxiety. The left supramarginal 

gyrus, more traditionally associated with phonological processing and verbal working memory, 

is less commonly linked to anxiety in the literature. However, its involvement may reflect 

differences in language-based internal processing or verbal rehearsal strategies in anxious 

individuals, especially under cognitive load. These findings align with theories emphasizing 

disrupted executive control in anxious youth (Xie et al., 2021). 

The middle temporal gyrus, associated with semantic processing and social cognition, has 

also been linked to adolescent social anxiety. For example, Wang et al. (2021) found that 

increased gray matter volume in the right MTG was associated with higher social anxiety, a 

relationship that was mediated by emotional intelligence. Golde et al. (2023) showed that MTG 

activation, along with the temporal pole, increases with stress and is tied to maladaptive 

emotional behaviors like avoidance. The temporal pole itself, which helps integrate social 

context with emotional meaning, has shown promise as a biomarker of pediatric anxiety: 

Sawalha et al. (2021) reported that activation in this region alone could classify anxiety children 

with over 80% accuracy, although this study was done in a small sample. 

Lastly, the left postcentral gyrus, part of the primary somatosensory cortex, is 

traditionally involved in processing tactile and bodily input. Yet recent work suggests it may also 

support emotional awareness and interoceptive regulation through its connections to the insula 

and the amygdala. Kropf et al. (2019) highlight this role in their review, proposing that the 
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primary somatosensory cortex contributes to emotional experience by representing internal 

bodily states. Its inclusion here might reflect a somatic dimension of anxiety that is especially 

salient in younger populations. 

Of course, these interpretations remain tentative. I did not employ model interpretability 

tools beyond feature importance, and it is possible that some of the selected features reflect noise 

or indirect associations rather than true signal. Moreover, the stability of these features across 

different subsamples or in longitudinal designs is uncertain. Nevertheless, the observed overlap 

with prior findings is encouraging and suggests that the model may be capturing meaningful 

neurobiological patterns relevant to anxiety. 

Limitations 

While this study achieves promising classification performances and highlights potential 

biomarkers of anxiety in preadolescents, several limitations must be acknowledged. First, the use 

of beta activation coefficients, while standard in task-fMRI analysis, has notable limitations. 

These coefficients condense complex neural dynamics into averaged responses across a 

condition, potentially overlooking meaningful temporal dynamics or distributed information. 

They are also affected by violations of key GLM assumptions—like autocorrelation and HRF 

mis-modeling—as well as by scanner noise, task variability, and preprocessing steps, all of 

which can distort the beta estimates and make them less reliable for classification or diagnosis 

(Monti, 2011).​

​ Second, although including medication use as a feature helped account for 

treatment-related variance, it complicates interpretability. As noted earlier, the model may be 

capturing medication-related brain changes or underlying symptom severity rather than features 

specific to anxiety.​
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​ Third, diagnostic labels were based on a parent-reported questionnaires: the Child 

Behavioral Checklist. While widely used, these assessments are subject to bias and may not 

reliably reflect internalizing symptoms, which are often less visible to caregivers (Drotar et al., 

1995; De Los Reyes & Kazdin, 2005). In addition, both the DSM-V and ASEBA frameworks 

have been criticized for their rigid categorical structure, lack of neurobiological foundation, and 

arbitrary diagnostic thresholds, as noted in the introduction. As a result, the training labels may 

lack the accuracy required which is at the core of supervised Machine Learning.​

​ Fourth, the young age of participants represents a challenge per se. Preadolescents tend to 

be more restless, and thus show high head motion measures and attention fluctuations during 

scanning, both of which can undermine signal quality and introduce noise into the beta estimates 

(Engelhardt et al., 2017; Frew et al., 2022). ​

​ Finally, comorbid psychiatric conditions were not excluded in the anxiety and 

anxious-depressed group, though they were excluded in the control group. While this choice 

reflects clinical reality and supports generalizability, it limits the ability to isolate features that 

are specific to anxiety, given the overlapping neural correlates found with other internalizing 

disorders such as depression. 

Future Developments 

In light of the limitations discussed above, there are several ways to build on this work. 

First, future studies should aim to disentangle the effects of medication intake from anxiety itself. 

As discussed, including medication as a feature helped control for treatment-related variance, but 

may have introduced a confound. Stratifying by medication status or tracking participants 

longitudinally could clarify whether the model is detecting diagnosis-specific patterns or simply 

treatment history.​
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​ Second, improving the quality of the target labels could make a meaningful difference. 

Since the current labels came from parent-report, combining them with child self-reports or 

clinician administered assessments might better capture internalizing symptoms and reduce 

misclassification.​

​ Future work could also explore more detailed neural features. As mentioned above, beta 

coefficients provide a valuable summary but may miss important details. Emerging approaches 

like Multi-Voxel-Pattern-Analysis, which leverages distributed neural activity, might reveal 

additional differences between groups (Mahmoudi et al. 2012).​

​ It would also be useful to test the model’s stability. Replicating these findings on future 

ABCD releases would help assess generalizability. Additionally, comparing performance across 

diagnostic groups could also test whether the selected features are specific to anxiety or are 

common to other internalizing disorders.​

​ Lastly, future studies should consider moving beyond binary classification and instead 

use regression models to predict continuous measures of symptom severity. This would be more 

consistent with dimensional frameworks of psychopathology and could help capture meaningful 

variation in symptoms severity that binary labels miss. Using structured assessments like the 

CBCL to generate continuous symptom scores may improve the model’s sensitivity and offer a 

more nuanced view of how brain activation relates to internalizing symptoms. 

Conclusion 

This Honors Thesis represents a first step toward a data-driven approach to diagnosing 

anxiety in preadolescents. The abundance of neurobiological data and the maturity of the 

machine learning field offer a real opportunity to move toward faster, more accurate, and more 

biologically meaningful psychiatric diagnoses—advances that could ultimately improve 
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outcomes. At the same time, it’s important to be realistic about the limitations of classical 

machine learning, especially its tendency to overfit in noisy, high-dimensional datasets. The 

quality of the underlying data matters just as much as the modeling approach, and future work 

should continue to prioritize careful design, confound control, and meaningful validation. 
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Appendix 

 
 
Figure 7. Test set performance metrics for anxious depressed classification. 
Line plot showing test set accuracy (blue) and area under the ROC curve (ROC-AUC; orange) for binary classification of 
anxious depressed disorder. Features include beta activation coefficients grouped by task condition, along with medication intake 
(ADHD medication, antidepressants, antipsychotics, anticonvulsants, and mood stabilizers), biological sex, and collection site. 
Chance-level performance (0.5) is marked by the dashed horizontal line.  
 

The Anxious-Depressed (Anx/Dep) scale is one of the empirically derived syndrome 

scales from the Achenbach System of Empirically Based Assessment, specifically the Child 

Behavior Checklist for ages 6–18 (Achenbach 2018, Achenbach & Rescorla, 2001). It captures a 

combination of anxiety and depression symptoms such as nervousness, excessive worry, sadness, 

crying, and low self-worth which are based on caregiver ratings of the child’s behavior over the 

previous six months. While commonly used in developmental research, it’s important to note that 

the Anx/Dep scale does not correspond directly to any single DSM diagnosis. Instead, it reflects 

a broader measure of internalizing symptoms.​

​ In this project, a secondary analysis was conducted using the Anx/Dep scale as the target 

label. The same pipeline was applied, with medication use, sex, and site included as features. 

However, as shown in the figure above, classification performance was modest. Accuracy scores 

hovered around chance across most task conditions, and although one condition 
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(NegFace–NeutFace) reached a ROC-AUC of 0.72, this still fell short of the more consistent 

results observed in the Anxiety classification.​

​ There are a few likely reasons for this. First, the Anx/Dep scale blends two overlapping 

but distinct symptom domains, which may have introduced noise and reduced group separability. 

Second, while the CBCL is an important screening tool, it may not align cleanly with 

neurobiological patterns in the brain, especially when those patterns are subtle or 

diagnosis-specific. Finally, because the Anx/Dep group includes a wider range of internalizing 

symptom presentations, the underlying signal may be more diffuse, making it harder for the 

model to learn consistent patterns. In addition to these considerations specific to the Anx/Dep 

scale, the aforementioned limitations in beta activation coefficients, label accuracy, participants’ 

age, and comorbidities remain valid. ​

​ For these reasons, and to keep the focus on a more clinically interpretable outcome, the 

Anx/Dep results were not retained in the main analysis. They are included here for completeness. 
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